

BOTANICAL INGREDIENT CHARACTERIZATION; A TALE OF MORE THAN ONE THOUSAND AND ONE COMPOUNDS

Stefan Gafner, PhD CSO, American Botanical Council

May 29, 2020

The American Botanical Council

- •Non-profit educational organization
- Provides information on responsible and safe use of medicinal herbs
- •Members include consumers, healthcare professionals, researchers, educators, industry

- Founded in 1988 with James A. Duke, Norman R. Farnsworth
- and Mark Blumenthal as first Trustees of ABC board

Chemical Analysis TWG

Chemical Analysis Mission: To develop a strategy and methodologies to characterize botanical ingredients for the purpose of enabling safety assessments.

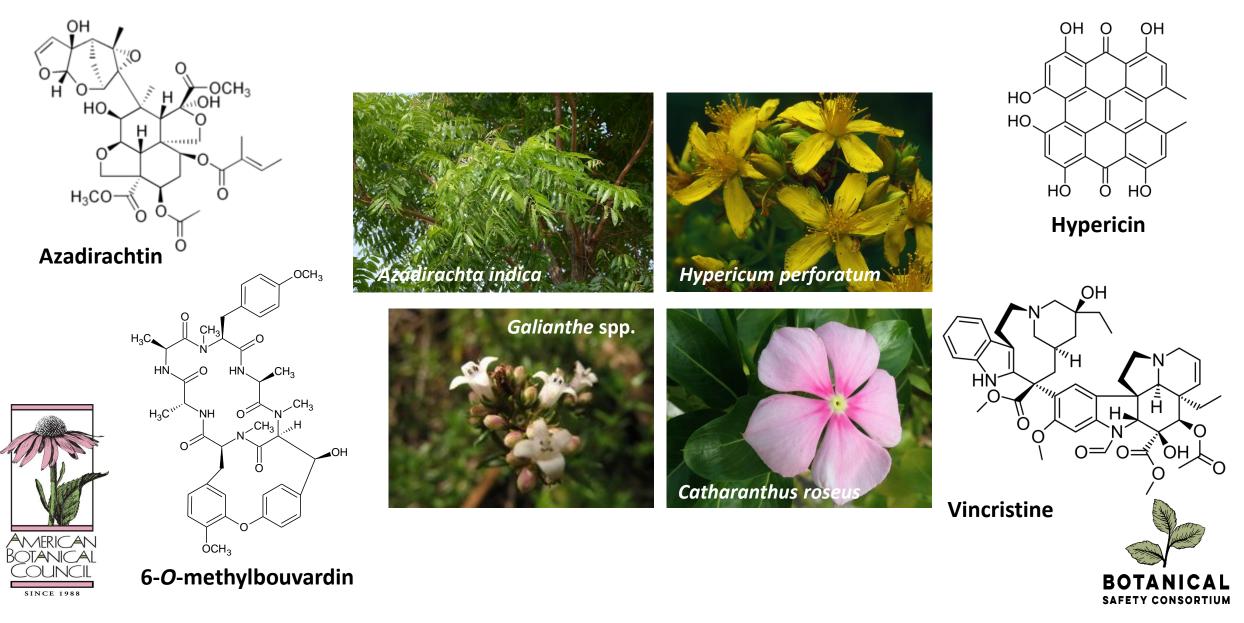
Objectives:

- **Prioritize selected candidates for comprehensive chemical characterization** based on the needs of other Technical Working Groups;
- Identify a strategy to compile existing literature on analytical methods used and chemical composition of selected botanical ingredients;
- Select resource-efficient analytical approaches, methods, and partners that can comprehensively characterize botanical ingredients with respect to safety, including, but not limited to, identifying and quantifying constituents of botanicals to the degree required for material selection and safety assessment.

Chemical Analysis TWG

Current Members

Rajiv Agarwal (FDA) Tim Baker (co-chair, P&G) Nadja Cech (UNC Greensboro) Kan He (Herbalife Nutrition) Ikhlas Khan (University of Mississippi) Adam Kuszak (NIH/OD) Eike Reich (HPTLC-Association) Catherine Rimmer (NIST) Elan Sudberg (Alkemist Labs) Micheal (Bhodi) Tims (Maryland University of Integrative Health) Richard van Breemen (Oregon State University) Suramya Waidyanatha (co-chair NIEHS) Hong You (Eurofins) Yanjun Zhang (Herbalife Nutrition)



A Tale Of Thousand And One Nights

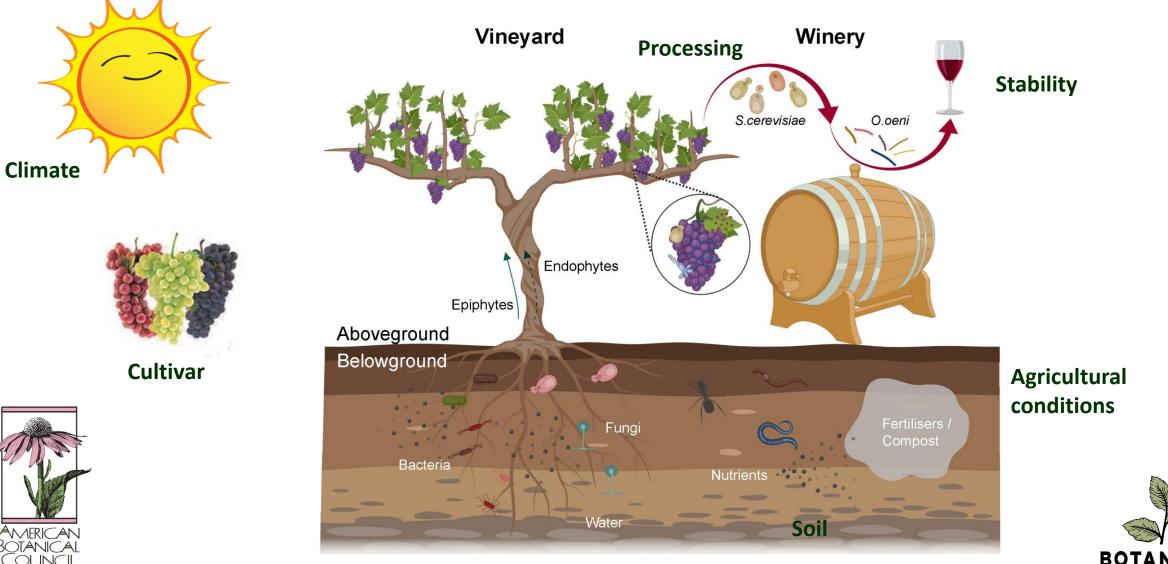
Scheherazade (painting by Hermann Emil Sprengel, 1881)

The Beauty of Plant Chemistry

The Challenges of Plant Chemistry

Between 500 – 10000 different molecules estimated in single plant species

Primary metabolism	Secondary metabolism
Essential to survival of plant	Facilitates primary metabolism
Directly involved in growth and	 Allows adaptation to, and survival in
development	natural environment
	 Involved in defense mechanisms
	Plays a role in reproduction
Examples:	Examples:
- DNA	- Terpenes
- Proteins	- Alkaloids
- Starch	- Flavonoids
- Cellulose	- Tannins
- Fats/Waxes	
- Chlorophyll	

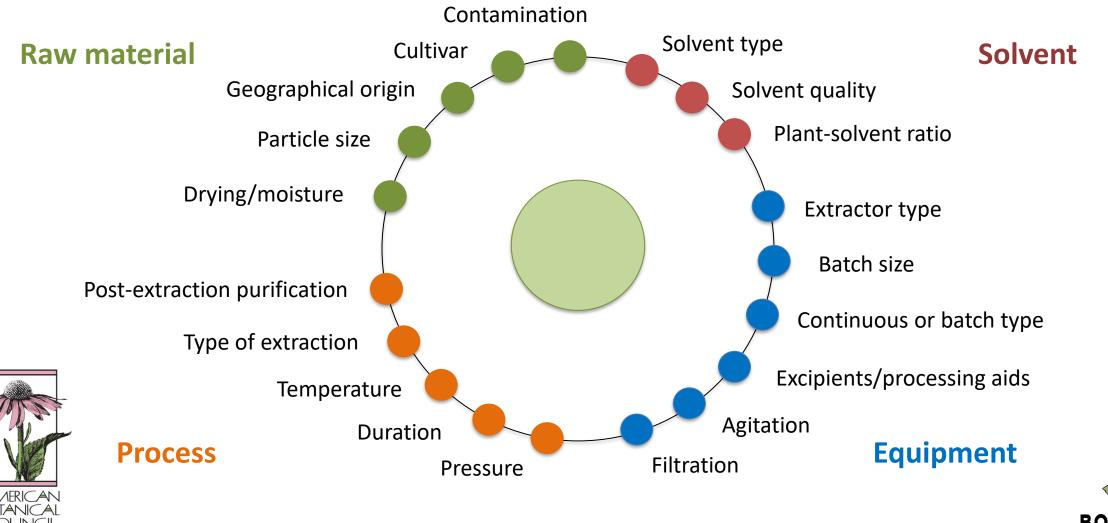


Miller JS. The discovery of medicines from plants: A current biological perspective. *Econ Bot*. 2011;65:396-407.

BOTAP

The Challenges of Plant Chemistry

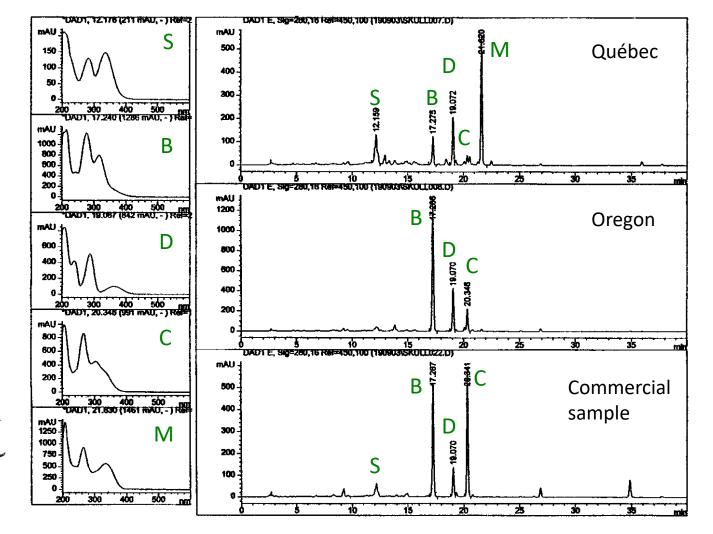
Factors that impact the ingredient metabolome



Liu G, et al. From the vineyard to the winery: How microbial ecology drives regional distinctiveness of wine. Front Microbiol, 2019.

SAFETY CONSORTIUM

Ingredient Chemistry

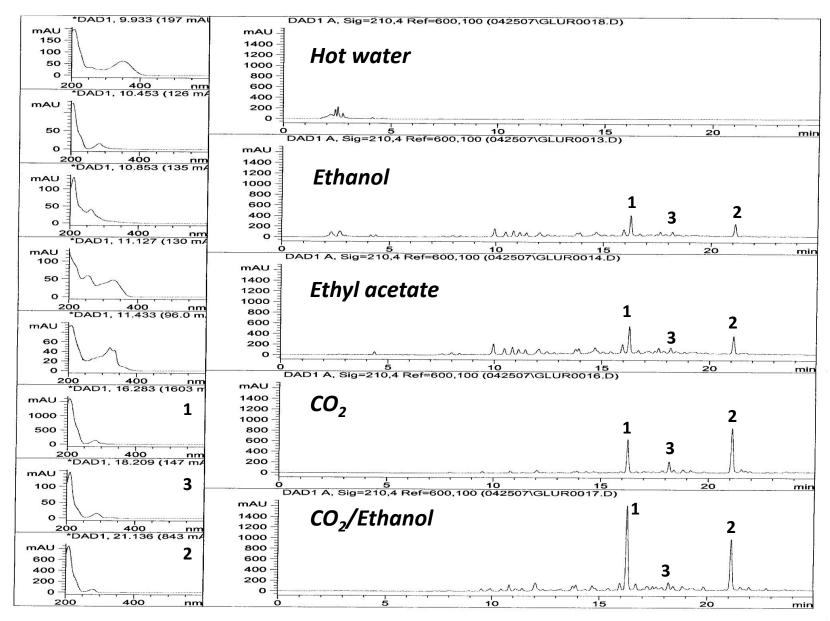

Processing Steps

Modified from http://www.berkem.com/en/expertise-en/plant-extraction

Differences in Metabolome

Scutellaria galericulata

Scutellaria galericulata


B: Baicalein-7-*O*-glucuronide (baicalin)
C: Chrysin-7-*O*-glucuronide
D: Dihydrobaicalein-7-*O*-glucuronide
M: 2'-Methoxychrysin-7-*O*-glucuronide
S: Scutallerein-7-*O*-glucuronide
(scutellarin)

HPLC-UV analysis with detection at 280 nm

NAFRICAN

Extract Chemistry Glycyrrhiza uralensis

Additional Challenges

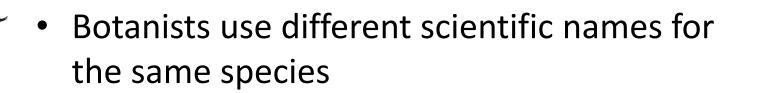
- Adulterants
- Heavy metals
- Residual solvents
- Microbial contamination
- Pesticides
- Herbicides
- Radioactivity
- Polyaromatic hydrocarbons (PAHs)
- Other contaminants (plasticizers, etc.)

The ABC-AHP-NCNPR Botanical Adulterants Prevention Program

- Program to educate herbal and dietary supplement industry members about ingredient and product adulteration
- Initiated by three non-profit organizations:
 - American Botanical Council (ABC)
 - American Herbal Pharmacopoeia (AHP)
 - National Center for Natural Products Research (NCNPR) at the University of Mississippi

16. Skullcap herb

Botanical Adulterants Prevention Bulletins


Publ	ished	Written, In Edits, and/or Peer-Review	Planned/ Proposed
 Aloe vera Arnica flower Ashwagandha root extract Bilberry fruit extract Bilberry fruit extract Black cohosh root & rhizome Boswellia tree resin 7. Cranberry fruit extract 8. Ginkgo leaf extract 9. Goldenseal root & rhizome 10. Grape seed extract 11. Maca root 12. Olive oil 13. Oregano leaf and oil 14. Rhodiola root/rhizome & extract 15. Saw palmetto fruit	 17. St. John's wort herb 18. Synthetic antimicrobials sold as "Grapefruit Seed Extract" 19. Tea tree leaf oil 20. Turmeric root/rhizome & extracts/curcumin 	 Cinnamon bark Cordyceps fruiting body Lavender flower oil Milk thistle extracts Pomegranate fruit & extract Saffron stigma 	 Black seed (<i>Nigella sativa</i>) oil Elder berry Eleuthero root Ginseng (Asian & American) root Kava Muira puama Sandalwood oil "Spiked" herbal extracts: caffeine, vitamin C, et al. Tongkat Ali

Analytical Methods Used for Botanical Ingredient Identification

Method	Applicability	Limitations; Not applicable to
Taxonomy	- Whole living plant	- Extracts, - Powdered or cut crude plant material
Macroscopy	- Whole or cut crude plant material	- Extracts - Powdered crude plant material
Microscopy	- Whole, cut or powdered crude plant material	- Extracts
Genetics (DNA)	 Whole, cut or powdered crude plant material Extracts possessing intact DNA from the parent plant 	 Extracts without DNA Materials processed using prolonged heat, exposure to UV light, or irradiation
UV/VIS (standalone)	 Extracts Whole, cut or powdered crude plant material after extraction 	- Analytes with no UV/VIS chromophore (e.g., sugars and sugar alcohols, many amino acids) without prior derivatization
FT-IR	 Extracts Whole, cut or powdered crude plant material after extraction 	- Extracts containing large amounts of carriers, e.g., maltodextrin
FT-NIR	 Extracts Whole, powdered or cut crude plant material 	 Materials with variable moisture content Extracts containing large amounts of carriers, e.g., maltodextrin
MS (standalone)	 Extracts Whole, cut or powdered crude plant material after extraction 	- Very high molecular weight analytes - Non-readily ionizable molecules
NMR	 Extracts Whole, cut or powdered crude plant material after extraction 	- Certain highly polymerized molecules (e.g., high molecular weight PACs)
HPTLC	 Extracts Whole, cut or powdered crude plant material after extraction 	- Highly polar compounds
GC-FID	 Extracts Whole, cut or powdered crude plant material after extraction 	- Non-volatile compounds
GC-MS	 Extracts Whole, cut or powdered crude plant material after extraction 	- Non-volatile compounds
HPLC-UV(DAD)	 Extracts Whole, cut or powdered crude plant material after extraction 	- Analytes with no UV/VIS chromophore (e.g., sugars and sugar alcohols, many amino acids) without prior derivatization
HPLC-MS	- Extracts - Whole, cut or powdered crude plant material after extraction	 Very low and very high molecular weight analytes Non-readily ionizable molecules (e.g., terpenes with limited presence of functional groups)

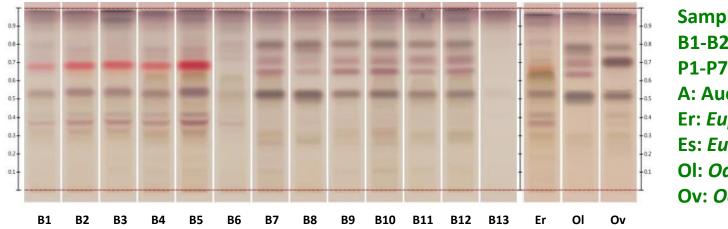
Euphrasia officinalis Identification Challenges

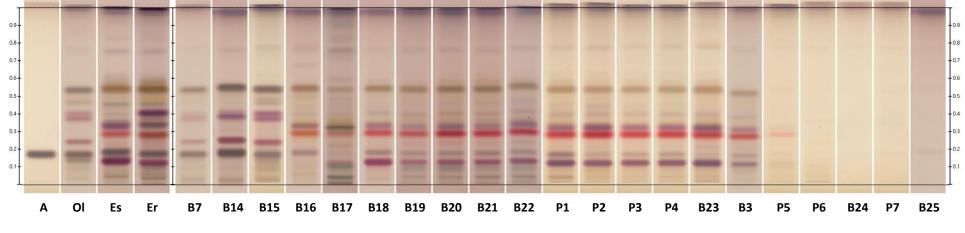
- Species hybridize frequently
- Self-pollination and insect pollination → species may exhibit highly variable morphology (e.g., *E. minima*)
- Morphological distinction criteria often blurred (e.g., *E. rostkoviana* vs. *E. montana* or *E. versicolor*)

Euphrasia rostkoviana (syn. E. officinalis subsp. rostkoviana)

HPTLC Investigation of Commercial Eyebright Samples

- 28 botanical samples collected in the wild, including 25 *Euphrasia* spp. samples, *Odontites lutea*, *O. viscosus*, and *Bartsia alpina*
- 32 commercial samples analyzed: 25 bulk materials and 7 finished products (USA: 28; Europe: 4)
- Bulk materials originating in Bulgaria, Croatia, Macedonia, Poland, and Ukraine



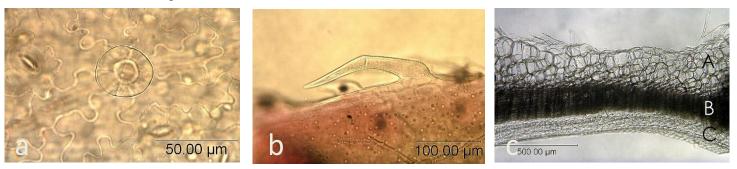

Results

Mobile phase: Dichloromethane, methanol, water (60:40:4)

Samples: B1-B25: Bulk samples P1-P7: Dietary supplements A: Aucubin Er: Euphrasia rostkoviana Es: Euphrasia stricta Ol: Odontites lutea Ov: Odontites viscosus

Mobile phase: Ethyl acetate, acetic acid, formic acid, water (100:11:11:26)

Bulk materials: 8 Odontites spp. (all from USA), 13 Euphrasia spp., 4 weak or blank Dietary supplements: 4 Euphrasia, 3 weak or blank Images provided by Camag, Switzerland





Digital Photo-Microscopy

Scutellaria lateriflora

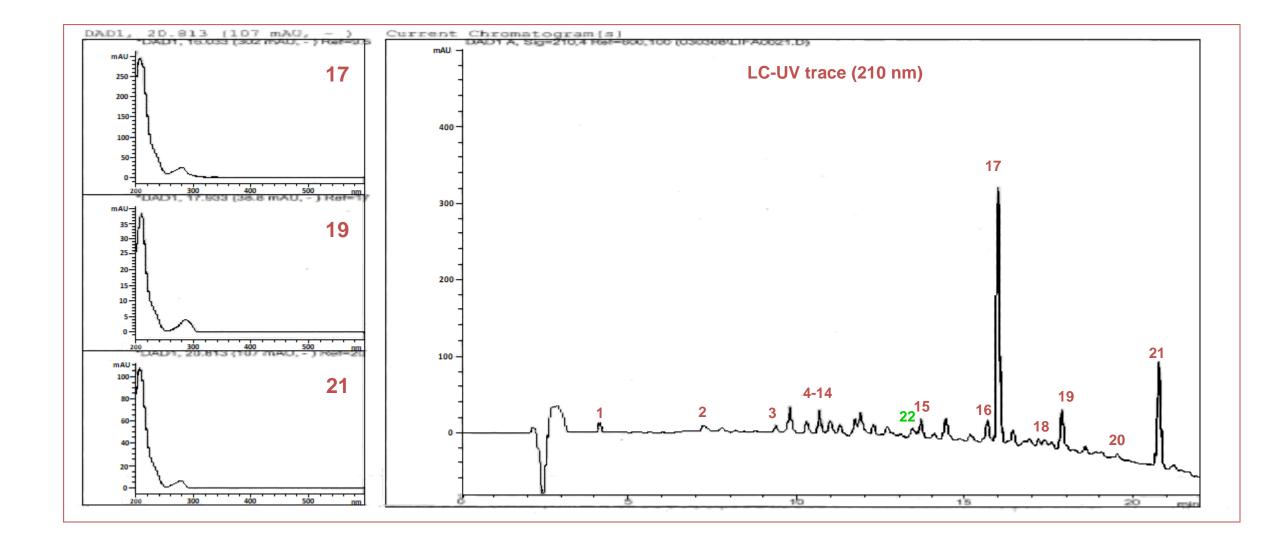


Teucrium canadense

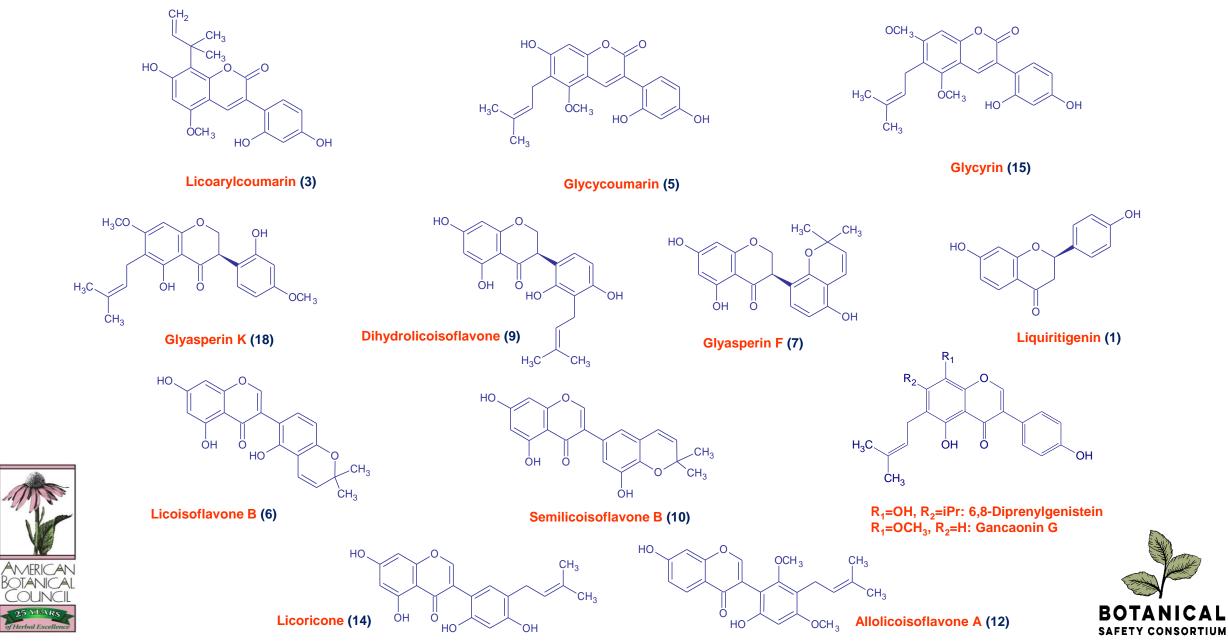
Teucrium chamaedrys

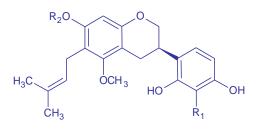
Images provided by Alkemist Labs

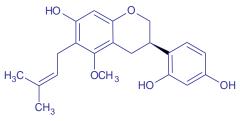
Glycyrrhiza uralensis Fisch.

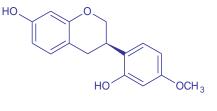


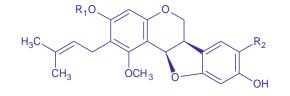
American Botanical Council

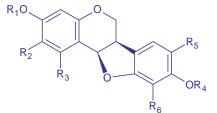

SINCE 1988

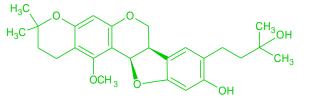

Licorice CO₂ Extract: Chemistry


Licorice extract chemistry

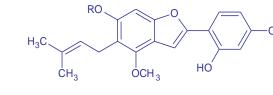

Licorice extract chemistry






Glyasperin C (8)

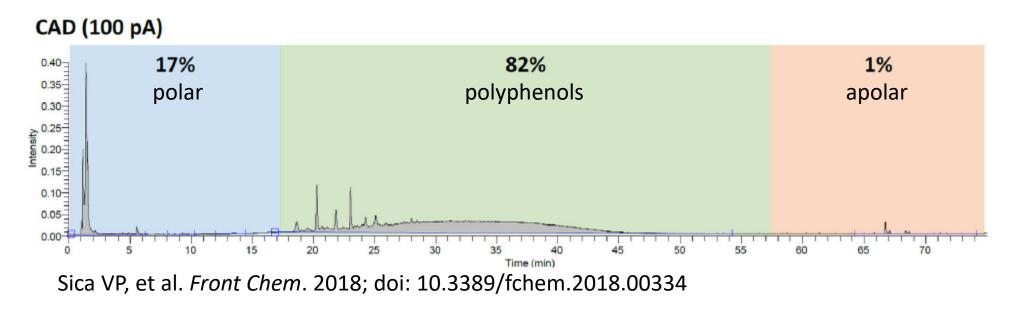
Vestitol (2)



R₁=H, R₂=iPr: 1-Methoxyficifolinol (19) 2-3% R₁=CH₃, R₂=H: Kanzonol P (20)

 $R_1=R_2=R_3=R_5=R_6=H, R_4=CH_3$: Medicarpin (4) $R_1=R_2=R_4=R_5=H, R_3=OCH_3, R_6=iPr$: 1-Methoxyphaseollidin (11) $R_1=R_4=R_5=R_6=H, R_3=OCH_3, R_2=iPr$: Edudiol (13)

Glycycarpan (22)



R=H: Licocoumarone R=CH₃: Gancaonin I

HPLC-CAD-HRMS Vitis vinifera

Composition:

75% Proanthocyanins (DP>5); 7% flavan-3-ol monomers to pentamers; <1% lignans; 16% minerals & carbohydrates

Toxicity calculations:

- No concerns for mutagenicity or genotoxicity based on published data
- No DART data
- Threshold of Toxicological Concern (TTC): 90 μg/kg/day¹ per analyte

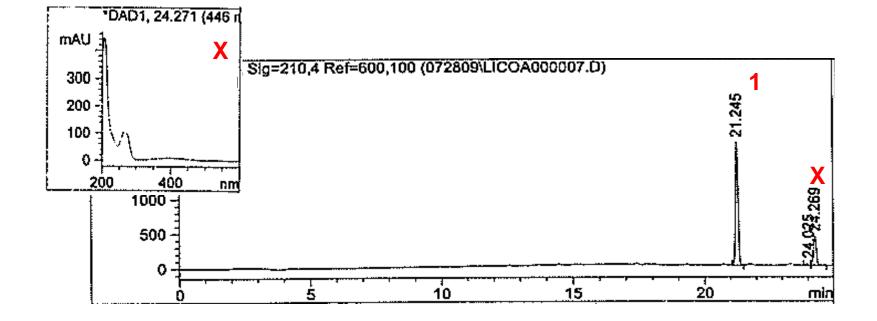
¹Review of the Threshold of Toxicological Concern (TTC) approach and development of new TTC decision tree. *EFSA Support Publ*. 2016;13:1006.

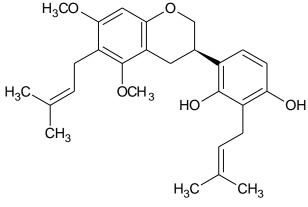
Multiple Analytical Methods Aloe vera

Composition of 18 commercial decolorized aloe vera leaf extracts:

Analyte	Method	Amount [%]
Moisture	Gravimetry	2.6 - 8.0
Total ash	Ignition	6.7 - 28.8
Lipid content	Gravimetry	0.3-4.3
Protein content	Kjeldahl nitrogen	0.7 - 9.8
Crude fiber	Gravimetry	traces – 45.8
Free sugars	HPAEC-PAD	0.1 - 37.7
Organic acids	HPLC-UV	5.0 - 31.4
Polysaccharides	GPC-MALS/RI	6.9 – 45.4

All analytes combined account for 84.6 – 95.2% of the extract

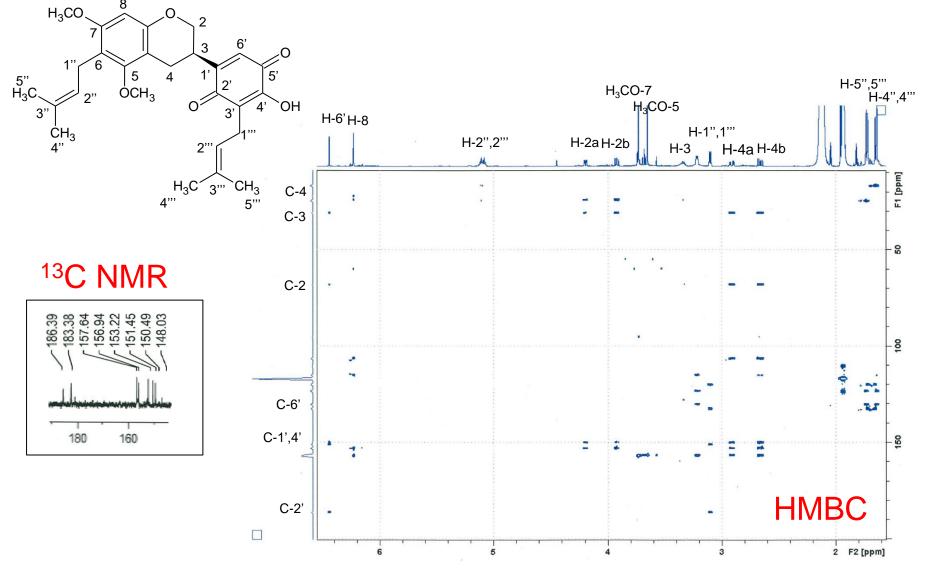



Zhang Y, et al. J AOAC Int. 2018; 101(6):1741-1751

What Happens In Test Medium? Licorisoflavan A

Stress tests as part of HPLC method validation:

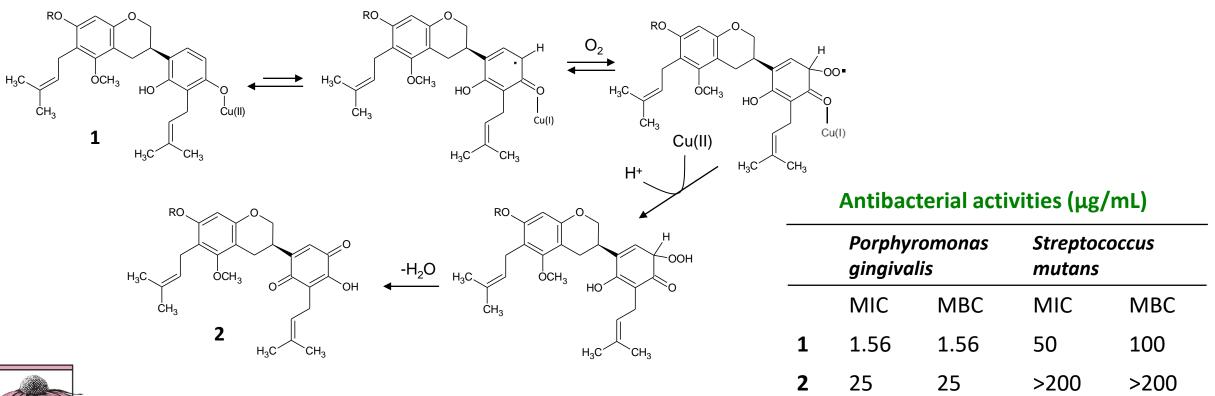
- 0.1 N HCI
- 0.1 N NaOH
- $3\% H_2O_2$



1: Licorisoflavan A

Licorisoflavan A after 22 hours in 0.1 N NaOH

HPLC-NMR



NMR data agrees with *p*-quinone

Proposed Reaction

Ling KQ, Lee Y, Macikenas D *et al.*, J. Org. Chem. 2003, *68*, 1358-66 Singh US, Scanell RT, An H *et al.*, J. Am. Chem. Soc. 1995, *117*, 12691-99

Chemical Analysis TWG Method Considerations

- Availability of botanically authenticated reference material
- Presence of inert material (e.g., cellulose, maltodextrin, dirt)
- Adaptation of the methods for testing with mixtures, (e.g., TCM)
- Sample preparation issues (e.g., solubility of "botanicals")
- Ability to evaluate the material in bioassay fluids
- Stability issues (e.g., ligustilide in extracts of *Ligusticum* spp.) and compatibility issues (e.g., solubility of the analyte in the mobile phase)
- Detection bias

Chemical Analysis TWG Approach

Literature on phytochemical compositions of botanical ingredients will be compiled
Crude powdered raw plant materials & finished products will be procured from multiple suppliers
Botanical taxonomy, macroscopic identification, microscopic identification, DNA barcoding, chemical analysis can be used to determine authenticity
Identification & quantitation of constituents. Also moisture content, total inorganics, nutrient content, mass balance, etc.
Presence of pesticides, heavy metals, & mycotoxins will be determined
Stability of known marker constituents will be determined

AMERICAN

SINCE 1988

Acknowledgements

- Chantal Bergeron
- Mark Blumenthal
- John Cardellina
- Steven Foster
- Débora Frommenwiler
- Markus Godejohann
- Daniel Grenier
- Pavel Kessler
- Jonathan Nguyen
- Eike Reich
- Élan Sudberg
- Sidney Sudberg
- Jacquelyn Villinski

BOTANICAL SAFETY CONSORTIUM