Application of \textit{in silico} & \textit{in vitro} approaches for evaluating developmental & reproductive toxicity in botanical products

Mitchell, Connie \(^1\); Reinsalu, L. \(^2\); Jia, Q. \(^2\); Mahony, C. \(^2\); Cronin, MT \(^3\); Huang, MC \(^3\); Embry, M. \(^1\); Fitzpatrick, S. \(^2\); Galli, CL \(^2\); Inselman, A. \(^2\); Larson, J. \(^2\); Pieters, R. \(^2\); Ranganathan, P. \(^1\); Rider, CV \(^2\); Rogers, J. \(^3\); Sutherland, V. \(^2\). \(^1\)HESI, Washington, DC; \(^2\)Procter and Gamble Technical Centre, Reading, UK; \(^3\)Procter and Gamble Company, Mason, OH, Liverpool John Moores, UK; \(^2\)NIEHS, RTP, NC; \(^3\)US FDA, Bethesda, MD; \(^2\)University of Milan, Italy; \(^2\)US FDA, National Center for Toxicological Research, Jefferson, AR; \(^2\)Herbalife Nutrition, Torrance, CA; \(^2\)Utrecht University & University of Applied Sciences Utrecht, Netherlands; \(^2\)PepsiCo, Purchase, NY; \(^2\)ToxStrategies RTP, NC

\textbf{Background}

- While exposure to botanicals and their constituents can occur during important life stages (reproductive years, pregnancy, childhood, menopause), developmental and reproductive toxicity (DART) has been underestimated for many botanicals.
- Traditional \textit{in vivo} animal toxicity testing on these complex and variable substances is not always practical and is resource intensive.

The Botanical Safety Consortium (BSC) is a public-private partnership, formed by the US FDA, NIEHS, and HESI. The BSC works to improve botanical safety by evaluating the suitability of new approach methodologies (NAMs) for botanicals as complex mixtures with DART being a key focus area.

\textbf{Methods}

- Two in silico tools were utilized to predict potential DART liabilities of botanical constituents:
 1. \textit{P&G Profiler} (identifies potential DART-active chemicals by integrating chemical structure with known DART modes of action)
 2. VEGA – provides numerous QSAR models to predict toxicity
- Compounds & constituents for evaluations were chosen from:
 - COCONUT database for \textit{in silico}+ use for \textit{in silico} evaluations
 - \textit{COCONUT database} for \textit{in vitro} use for further scrutiny

\textbf{Blue cohosh: in silico case study}

- Blue cohosh has reported teratogenic effects
- 14 of the known constituents were run through the \textit{P&G Profiler} and VEGA tools
- The models predicted different numbers of flags
- For the \textit{P&G profiler}, the 6 constituents not identified/not flagged were mapped to a scaffold for further scrutiny
- Overall, most constituents resulted in a flag or need to be further investigated.

\textbf{Botanical Case Studies}

- We screened 100K of the +400K compounds in the COCONUT database for DART alerts.
- Using the \textit{P&G Profiler}, only 10% of the phytochemicals screened did not yield an alert.

\textbf{Future Directions}

- Identify context-of-use for \textit{in silico} assays
- Use ADME models to understand the large volume of toxicity flags
- Use multiple evidence streams (\textit{in silico} and \textit{in vitro}) in a Weight of Evidence analysis to provide information for safety evaluation

- Evaluate initial screening assays for their suitability for botanicals as complex mixtures
 - Transcriptomics in human cell lines
 - Zebrafish embryos
 - \textit{C. elegans}
 - devTOX quickPredict assay

\textbf{Disclaimer}: The views, conclusions and recommendations expressed in this poster are those of the authors and do not necessarily represent the policies or positions of their organization.