Botanical Safety
Discovering Common Struggles, Needs, and Solutions

29th May 2020
Daniel S. Marsman, DVM PhD
Broad consumer demand for natural health and nutritional products

• U.S. dietary supplement industry: $46 billion in annual sales.¹
• More than 170 million Americans take dietary supplements annually, including vitamins, minerals, botanicals, and specialty products.
• Half of dietary supplement users take at least one botanical product.
• Most popular Botanicals in dietary supplements include²:
 - Horehound (Marrubium vulgare)
 - Echinacea (Echinacea spp.)
 - Turmeric (Curcuma longa)
 - Elderberry (Sambucus nigra)
 - Green Tea (Camellia sinensis)
 - Ginger (Zingiber officinale)
 - Ivy Leaf (Hedera helix)
 - Garlic (Allium sativum)
 - Fenugreek (Trigonella foenum-graecum)
 - Black Cohosh (Actaea racemosa)
 - Saw Palmetto (Serenoa repens)
 - Flax Seed (Linum usitatissimum)

¹CRN; ²ABC
Botanicals with recognized pharmacologic and toxicologic properties

- In addition to plants as an essential part of the diet, plants are creative chemical factories, for good or harm.
Safety concerns

- Adulteration continues as a problematic reality
- Complexity and uncertainty also drive the Safety concerns.

Few essential oils met label spec in recent test

By Hank Schultz

This stimulant is banned in sports but found in dietary supplements. A doctor asks why

By ELIZABETH COONEY @cooney_lk / SEPTEMBER 6, 2018

Essential oil adulteration continues to be an issue in the marketplace, according to testing results revealed by a major dietary supplement manufacturer.
Botanicals are complex

- Plants are chemical factories
 - 28,187 plant species recording as being of medicinal use*
 - Very few (16%) cited in regulatory publications
 - Secondary metabolites exhibit a broad range of bioactivities
 - Many bioactive constituents from plants have been exploited by humans for use as pesticides, pharmaceuticals, poisons, or other consumer products

Analytical Challenge

Red Clover
Trifolium pratense
Whole herb, EtOH extract

Complexity
- Isomers, co-eluting compounds

Variation
- Lot to lot, processing, seasonal, stability
- Large dynamic range of constituent levels
- Lack of analytical standards
- Limited or inaccurate literature data

Identify all of these components…
…and quantify them.
Agricultural practices drive additional complexity

- Good Agricultural Practice
- Harvest Conditions
- Botanical Parts
Botanical raw material processing adds additional complexity
Botanical products are variable

- **Source material**
 - Plant part (aerial, root, whole plant, leaf, seed)
 - Climate
 - Soil conditions
 - Season
 - Plant maturity
 - Contaminants (mold, pesticides, metals)
 - Co-harvested materials (other plants, soil)

- **Processing**
 - Extraction process
 - Solvents
 - Adulteration
 - Contamination
 - Storage/shipping conditions

- **Finished product**
 - Manufacturing process
 - Excipients
 - Combination with other botanicals
 - Adulteration
 - Contamination
 - Storage/shipping conditions
Botanical products are variable

Source material
- Plant part (aerial, root, whole plant, leaf, seed)
- Climate
- Soil conditions
- Season
- Plant maturity
- Contaminants (mold, pesticides, metals)
- Co-harvested materials (other plants, soil)
- Adulteration

Processing
- Extraction process
- Solvents
- Adulteration
- Contamination
- Storage/shipping conditions

Finished product
- Manufacturing process
- Excipients
- Combination with other botanicals
- Adulteration
- Contamination
- Storage/shipping conditions

Exposure
- Dose (use pattern)
- Length of dosing
- Life-stage
- Disease-state
- Nutritional status
- Background genetics
- Co-exposures
Testing scheme built on single chemicals

- Toxicity testing, safety evaluation, and risk assessment processes was built around and optimized for single chemicals (drug, pesticides…)

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Botanicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Regulatory structure aimed at ensuring safety and efficacy</td>
<td>- Regulatory structure aimed at ensuring access</td>
</tr>
<tr>
<td>- Assumed to be harmful until proven safe</td>
<td>- Assumed to be safe until proven harmful</td>
</tr>
<tr>
<td>- Simple and consistent</td>
<td>- Complex and variable</td>
</tr>
<tr>
<td>- Biological activity is associated with the constituent</td>
<td>- Biological activity is associated with the whole mixture</td>
</tr>
</tbody>
</table>
Safe History of Documented Use: Hallmark of a botanical risk assessment

- Dietary use patterns provide essential bridge to safe human use
- Accurate historical records establish:
 - dose, duration, population size & diversity;
 - botanical part, species identity,
 - harvest conditions, extraction conditions, solvents...
- What if not identical?
Traditional toxicology tools are generally not fit-for-purpose for botanicals

For a novel botanical, the current safety qualification process is highly dependent on animal testing:

- Often a high degree of variability when evaluating mixtures,
- An insensitive tool for discerning minor variations,
- Resource and time intensive,
- Moral/ethical considerations.
New 21st Century methodologies are providing an improved path forward

- Advances in chemical analysis provide clearer picture of raw material composition and variance
- Differential analysis provides framework to evaluate relevant differences

Analysis of Grape Seed Extract
New 21st Century methodologies are providing an improved path forward

- Current Safety Methods (*in vitro, ex vivo, in silico*) provide a suite of new options
Finding Common Ground

C. L. Galli, et. al., Tox. Lett. 314:10-17, 2019

In silico approach to safety of botanical dietary supplement ingredients utilizing constituent-level characterization.
Common Struggles, Needs, and Solutions

- Growing demand for botanical products, and growing trend towards modified or specialty botanicals.
- Diverse botanical starting materials, coupled with variable agricultural and processing practices.
- Ongoing need for bridging to biosimilar materials, and a transparent discussion on qualification of new materials.
- Desire to apply 21st Century (non-animal) methodologies.
Mission of the Botanical Safety Consortium

To enhance the botanical safety toolkit and bring clarity to botanical dietary ingredient assessments for manufacturers and regulators.